Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(19): e2221542120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126703

RESUMO

Laboratory models are critical to basic and translational microbiology research. Models serve multiple purposes, from providing tractable systems to study cell biology to allowing the investigation of inaccessible clinical and environmental ecosystems. Although there is a recognized need for improved model systems, there is a gap in rational approaches to accomplish this goal. We recently developed a framework for assessing the accuracy of microbial models by quantifying how closely each gene is expressed in the natural environment and in various models. The accuracy of the model is defined as the percentage of genes that are similarly expressed in the natural environment and the model. Here, we leverage this framework to develop and validate two generalizable approaches for improving model accuracy, and as proof of concept, we apply these approaches to improve models of Pseudomonas aeruginosa infecting the cystic fibrosis (CF) lung. First, we identify two models, an in vitro synthetic CF sputum medium model (SCFM2) and an epithelial cell model, that accurately recapitulate different gene sets. By combining these models, we developed the epithelial cell-SCFM2 model which improves the accuracy of over 500 genes. Second, to improve the accuracy of specific genes, we mined publicly available transcriptome data, which identified zinc limitation as a cue present in the CF lung and absent in SCFM2. Induction of zinc limitation in SCFM2 resulted in accurate expression of 90% of P. aeruginosa genes. These approaches provide generalizable, quantitative frameworks for microbiological model improvement that can be applied to any system of interest.


Assuntos
Infecções Bacterianas , Fibrose Cística , Infecções por Pseudomonas , Humanos , Ecossistema , Infecções por Pseudomonas/microbiologia , Transcriptoma , Células Epiteliais/microbiologia , Meios de Cultura/metabolismo , Fibrose Cística/microbiologia , Pseudomonas aeruginosa/genética , Escarro/microbiologia
2.
mBio ; 14(1): e0306722, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36475772

RESUMO

Our understanding of how bacterial pathogens colonize and persist during human infection has been hampered by the limited characterization of bacterial physiology during infection and a research bias toward in vitro, fast-growing bacteria. Recent research has begun to address these gaps in knowledge by directly quantifying bacterial mRNA levels during human infection, with the goal of assessing microbial community function at the infection site. However, mRNA levels are not always predictive of protein levels, which are the primary functional units of a cell. Here, we used carefully controlled chemostat experiments to examine the relationship between mRNA and protein levels across four growth rates in the bacterial pathogen Pseudomonas aeruginosa. We found a genome-wide positive correlation between mRNA and protein abundances across all growth rates, with genes required for P. aeruginosa viability having stronger correlations than nonessential genes. We developed a statistical method to identify genes whose mRNA abundances poorly predict protein abundances and calculated an RNA-to-protein (RTP) conversion factor to improve mRNA predictions of protein levels. The application of the RTP conversion factor to publicly available transcriptome data sets was highly robust, enabling the more accurate prediction of P. aeruginosa protein levels across strains and growth conditions. Finally, the RTP conversion factor was applied to P. aeruginosa human cystic fibrosis (CF) infection transcriptomes to provide greater insights into the functionality of this bacterium in the CF lung. This study addresses a critical problem in infection microbiology by providing a framework for enhancing the functional interpretation of bacterial human infection transcriptome data. IMPORTANCE Our understanding of bacterial physiology during human infection is limited by the difficulty in assessing bacterial function at the infection site. Recent studies have begun to address this question by quantifying bacterial mRNA levels in human-derived samples using transcriptomics. One challenge for these studies is the poor predictivity of mRNA for protein levels for some genes. Here, we addressed this challenge by measuring the transcriptomes and proteomes of P. aeruginosa grown at four growth rates. Our results revealed that the growth rate does not impact the genome-wide correlation of mRNA and protein levels. We used statistical methods to identify the genes for which mRNA and protein were poorly correlated and developed an RNA-to-protein (RTP) conversion factor that improved the predictivity of protein levels across strains and growth conditions. Our results provide new insights into mRNA-protein correlations and tools to enhance our understanding of bacterial physiology from transcriptome data.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fibrose Cística/microbiologia , Perfilação da Expressão Gênica , Transcriptoma , Infecções por Pseudomonas/microbiologia
3.
mBio ; 11(1)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937646

RESUMO

Laboratory models are a cornerstone of modern microbiology, but the accuracy of these models has not been systematically evaluated. As a result, researchers often choose models based on intuition or incomplete data. We propose a general quantitative framework to assess model accuracy from RNA sequencing data and use this framework to evaluate models of Pseudomonas aeruginosa cystic fibrosis (CF) lung infection. We found that an in vitro synthetic CF sputum medium model and a CF airway epithelial cell model had the highest genome-wide accuracy but underperformed on distinct functional categories, including porins and polyamine biosynthesis for the synthetic sputum medium and protein synthesis for the epithelial cell model. We identified 211 "elusive" genes that were not mimicked in a reference strain grown in any laboratory model but found that many were captured by using a clinical isolate. These methods provide researchers with an evidence-based foundation to select and improve laboratory models.IMPORTANCE Laboratory models have become a cornerstone of modern microbiology. However, the accuracy of even the most commonly used models has never been evaluated. Here, we propose a quantitative framework based on gene expression data to evaluate model performance and apply it to models of Pseudomonas aeruginosa cystic fibrosis lung infection. We discovered that these models captured different aspects of P. aeruginosa infection physiology, and we identify which functional categories are and are not captured by each model. These methods will provide researchers with a solid basis to choose among laboratory models depending on the scientific question of interest and will help improve existing experimental models.


Assuntos
Fibrose Cística/microbiologia , Pseudomonas aeruginosa/genética , Biologia Computacional , Células Epiteliais/microbiologia , Humanos , Técnicas In Vitro , Pulmão/microbiologia , Técnicas Microbiológicas , Modelos Biológicos , Pseudomonas aeruginosa/fisiologia , RNA-Seq , Escarro/microbiologia
4.
Proc Natl Acad Sci U S A ; 115(22): E5125-E5134, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29760087

RESUMO

Laboratory experiments have uncovered many basic aspects of bacterial physiology and behavior. After the past century of mostly in vitro experiments, we now have detailed knowledge of bacterial behavior in standard laboratory conditions, but only a superficial understanding of bacterial functions and behaviors during human infection. It is well-known that the growth and behavior of bacteria are largely dictated by their environment, but how bacterial physiology differs in laboratory models compared with human infections is not known. To address this question, we compared the transcriptome of Pseudomonas aeruginosa during human infection to that of P. aeruginosa in a variety of laboratory conditions. Several pathways, including the bacterium's primary quorum sensing system, had significantly lower expression in human infections than in many laboratory conditions. On the other hand, multiple genes known to confer antibiotic resistance had substantially higher expression in human infection than in laboratory conditions, potentially explaining why antibiotic resistance assays in the clinical laboratory frequently underestimate resistance in patients. Using a standard machine learning technique known as support vector machines, we identified a set of genes whose expression reliably distinguished in vitro conditions from human infections. Finally, we used these support vector machines with binary classification to force P. aeruginosa mouse infection transcriptomes to be classified as human or in vitro. Determining what differentiates our current models from clinical infections is important to better understand bacterial infections and will be necessary to create model systems that more accurately capture the biology of infection.


Assuntos
Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transcriptoma/genética , Animais , Biofilmes , Fibrose Cística , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Genes Bacterianos , Humanos , Aprendizado de Máquina , Camundongos , Pseudomonas aeruginosa/isolamento & purificação , Percepção de Quorum/genética , Máquina de Vetores de Suporte , Infecção da Ferida Cirúrgica/metabolismo , Infecção da Ferida Cirúrgica/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA